- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Braun, Matthew G (2)
-
Anderson, Noah T (1)
-
Bancroft, Alyssa M (1)
-
Bergmann, Kristin D (1)
-
Clark, Ryan J (1)
-
Cramer, Bradley D (1)
-
Day, James E (1)
-
Griffith, Elizabeth M (1)
-
Heath, Megan N (1)
-
Hogancamp, Nicholas J (1)
-
Saltzman, Matthew R (1)
-
Stolfus, Brittany M (1)
-
Tassier-Surine, Stephanie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shallow-water platform carbonate δ13C may provide a record of changes in ocean chemistry through time, but early marine diagenesis and local processes can decouple these records from the global carbon cycle. Recent studies of calcium isotopes (δ44/40Ca) in shallow-water carbonates indicate that δ44/40Ca can be altered during early marine diagenesis, implying that δ13C may also potentially be altered. Here, we tested the hypothesis that the platform carbonate δ13C record of the Kinderhookian-Osagean boundary excursion (KOBE), ∼353 m.y. ago, reflects a period of global diagenesis using paired isotopic (δ44/40Ca and clumped isotopes) and trace-element geochemistry from three sections in the United States. There is little evidence for covariation between δ44/40Ca and δ13C during the KOBE. Clumped isotopes from our shallowest section support primarily sediment-buffered diagenesis at relatively low temperatures. We conclude that the δ13C record of the KOBE as recorded in shallow-water carbonate is consistent with a shift in the dissolved inorganic carbon reservoir and that, more generally, ancient shallow-water carbonates can retain records of primary seawater chemistry.more » « less
-
Braun, Matthew G; Bancroft, Alyssa M; Hogancamp, Nicholas J; Stolfus, Brittany M; Heath, Megan N; Clark, Ryan J; Tassier-Surine, Stephanie; Day, James E; Cramer, Bradley D (, Geological Society of America Bulletin)The tristate area of Iowa, Illinois, and Missouri contains some of the best-exposed Mississippian strata in the world, including the type area for the Mississippian subsystem, across a broad carbonate platform known as the Burlington shelf. Strata have been mapped as thinnest along the central middle shelf and thickening both up-ramp and down-ramp, forming a complex dumbbell-like stratigraphic pattern rather than a simple clinoform geometry thinning into the basin. Additionally, two significant hiatuses at the Devonian-Carboniferous boundary and Kinderhookian-Osagean boundary greatly complicate stratigraphic correlations across the region. As a result, the precise temporal relationships between strata deposited across the region remain uncertain. Two large biogeochemical events occurred during this interval that provide facies-independent chronostratigraphic tools: the Hangenberg event, which marks the Devonian-Carboniferous boundary, and the Kinderhookian-Osagean boundary event. To target these events, we collected 66 conodont samples and 1005 carbonate carbon isotope samples from three cores and three outcrops and integrated the results with existing data from key facies/depth transitions across the Burlington shelf. Our new data demonstrate a complex relationship among complementary stratigraphic thicknesses, where the Devonian-Carboniferous boundary interval is thin or absent in the up-ramp inner-shelf setting and preserved in a significantly expanded interval in the central to distal middle-shelf deposits of southeast Iowa and northeast Missouri. However, the overlying Kinderhookian-Osagean boundary interval is not preserved in this down-ramp setting but is preserved in significantly expanded strata in the up-ramp inner-shelf setting of central Iowa.more » « less
An official website of the United States government
